Tesis doctorales de Econom�a


VALORACI�N DE PEQUE�AS EMPRESAS: UNA APLICACI�N A LA MARCA �DENOMINACI�N DE ORIGEN DEHESA DE EXTREMADURA�

Celestino Casta�o Guill�n



Esta p�gina muestra parte del texto pero sin formato.
Puede bajarse la tesis completa en PDF comprimido ZIP (595 p�ginas, 2.28 Mb) pulsando aqu�

 

 

 

4.7.2 Crecimiento constante

Supondremos en este caso que los flujos que genera la empresa crecen de forma indefinida a una tasa constante anual g > 0. Esto supone que las relaciones deudas/recursos propios (D/E) y necesidades operativas de fondos sobre activos fijos neto (NOF/AFN) se mantienen constantes.

A diferencia del supuesto anterior, en el que no era necesario determinar el periodo en el que se produc�an los diferentes FCF, CFac y CCF, en este caso, como los valores no se mantienen constantes, es necesario especificar el periodo. Por ejemplo CFac1 = CFac0 (1 + g).

Igualmente cambian las formulas de valoraci�n para cada una de las situaciones enumeradas anteriormente.

4.7.2.1 Valoraci�n de empresas a partir del CFac

(4.46)

(4.47)

4.7.2.2 Valoraci�n de la empresa a partir del FCF

(4.48)

La expresi�n que relaciona FCF con CFac es:

(4.49)

ya que

donde, para este caso particular:

I1 = D0 Kd

Δ D1 = g D0

Para calcular WACC procedemos de la misma forma que lo hicimos en el caso anterior pero tomando las f�rmulas para el caso de crecimiento constante.

(4.50)

4.7.2.3 Valoraci�n de la empresa a partir del CCF

(4.51)

La relaci�n entre CCF; CFac y FCF queda en este caso:

(4.52)

(4.53)

Procedemos de la misma manera que en el caso anterior para calcular el valor de WACCBT.

(4.54)

4.7.2.4 Valor actual ajustado (APV)

(4.55)

En el caso del crecimiento constante, el valor del ahorro de impuestos por pago de intereses (VTS) resulta:

VTS = (4.56)

Los VTS no es el VAN de un flujo, sino la diferencia de dos valores actuales netos, por una parte los impuestos de la empresa sin deuda y por otra los impuestos de la empresa con deuda.

La f�rmula que relaciona WACC y Ku la obtenemos utilizando las dos expresiones, ya deducidas, siguientes:

y

(4.57)

Sustituyendo la expresi�n de WACC para calcular el valor de la empresa a partir del FCF, obtenemos la expresi�n matem�tica que relaciona Ku, Ke y Kd.

(4.58)

Las expresiones del CAPM utilizadas en el caso de perpetuidades son tambi�n v�lidas para el caso de crecimiento constante.

Una expresi�n que puede resultar �til es la que se obtiene de la combinaci�n de:

y

despejando e igualando el valor de FCF1 para los casos tenemos:

(4.59)

4.7.2.5 La valoraci�n cuando el nominal (N) de la deuda y su valor de mercado (D) no coinciden

N es el valor nominal de la deuda, r el tipo de inter�s que paga, por tanto los intereses anuales son N r.

Kd es la rentabilidad de la deuda que los bonistas o el banco deben exigir a la empresa de acuerdo con el riesgo y la magnitud de la deuda. Luego Kd D son los intereses, que desde un punto de vista razonable, deber�a pagar la empresa.

Hasta ahora hemos supuesto que Kd = r. En el supuesto de que esta igualdad no se verifique no coincidir�n D y N.

Vamos a considerar el caso en que Δ N1 = g N0 entonces:

(4.60)

La relaci�n entre CFac y FCF en este caso ser�:

CFac1 = FCF1 � N0 r (1 � T) + g N0 = FCF1 � D0 (Kd � g) + N0 r T (4.61)

Vemos que cuando r ≠ Kd la relaci�n entre CFac y FCF no es igual que cuando se da la igualdad r = Kd. Consecuentemente las ecuaciones utilizadas en uno y otro caso cambian.

(4.62)

(4.63)

Tambi�n cambia la expresi�n para los VTS.

(4.64)

Como hemos visto D0 Kd � D0 g = N0 r � N0 g, es claro que N0 r � D0 Kd = g (N0 � D0). Sustituy�ndolo en la ecuaci�n anterior tenemos.

(4.65)

 4.7.3 Caso general

Veremos en este apartado la formulaci�n general de valoraci�n.

4.7.3.1 Valoraci�n de empresas a partir del CFac

(4.66)

Si Ke = const., entonces:

(4.67)

4.7.3.2 Valoraci�n de la empresa a partir del FCF

(4.68)

Si WACC = const., entonces:

(4.69)

La relaci�n entre CFac y FCF sigue teniendo la forma:

Y la tasa de descuento apropiada para FCF es:

(4.70)

4.7.3.3 Valoraci�n de la empresa a partir del CCF

(4.71)

La relaci�n entre CCF; CFac y FCF queda en este caso:

donde ΔDt = Dt � Dt-1 , y por otra parte, It = Dt-1 Kdt

El valor de WACCBT

(4.72)

4.7.3.4 Valor actual ajustado (APV)

(4.73)

(4.74)


Grupo EUMEDNET de la Universidad de Málaga Mensajes cristianos

Venta, Reparación y Liberación de Teléfonos Móviles
Enciclopedia Virtual
Biblioteca Virtual
Servicios