GUÍA RÁPIDA RATIOS FINANCIEROS Y MATEMÁTICAS DE LA MERCADOTECNÍA
Esta página muestra parte del texto pero sin formato.
César Aching Guzmán
Puede bajarse el libro completo en PDF comprimido ZIP
(58 páginas, 3.27 Mb) pulsando aquí
5.3. Poblaciones y muestras
Como ya definimos, muestra es el número de elementos, elegidos o no al azar, tomado de un universo cuyos resultados deberán extrapolarse al mismo, con la condición de que sean representativos de la población.
No es necesario encuestar ni observar a todos los que pueden arrojar luz sobre un problema. Basta recabar datos de una muestra, a condición de que sus reacciones sean representativas del grupo entero. La clave de la investigación de mercados es determinar si la muestra suministra suficiente información.
La idea central en que se fundamenta el muestreo es que, un número pequeño de objetos (una muestra) seleccionada adecuadamente de una cantidad mayor de ellos (un universo) debe reunir las mismas características y casi en la misma proporción que el número más grande.
Para conseguir datos confiables, hay que aplicar la técnica correcta al seleccionar la muestra.
Aunque existen numerosas técnicas muestrales, sólo las muestras aleatorias o probabilísticas son adecuadas para hacer generalizaciones de una muestra a un universo. Extraemos una muestra aleatoria, de modo que todos los miembros del universo tengan las mismas probabilidades de ser incluidos en ella.
Las muestras, no aleatorias u opináticas conocidas con el nombre de muestras disponibles o de conveniencia, muy comunes en la investigación de mercados, no los tratamos en presente libro.
Empleando la estadística y fundamentándonos en la información obtenida por medio de una muestra, podemos decir cómo es probablemente una población. Igualmente, podemos tomar los datos relativos a la población para predecir cómo deben ser probablemente las muestras. Por ejemplo, un empresario interesado por el número de ventas de todas las empresas fabricantes de jeans de la ciudad de Lima. Puesto que el número de observaciones posibles es muy grande, debe decidir medir la cantidad de ventas de 30 de esos establecimientos. En este caso, las 30 empresas son la muestra; la población lo constituyen el total de las empresas fabricantes de jeans de la ciudad de Lima.
El empresario, utilizará la información sobre la muestra para conocer como es probablemente la población de las empresas fabricantes de jeans de la ciudad de Lima. Utilizará la información sobre la población para saber probablemente como será la muestra. Con esta información el empresario esta en condiciones de desarrollar adecuadamente la estrategia de mercadeo de su empresa.
Ejemplo 1: Para saber cuál de los cinco mercados de la zona donde vive Alessandro tiene los mejores precios, elabora una lista común de compras y toma los precios que figuran en la lista, de los cinco mercados. Para conocer si las cifras obtenidas son muestras o poblaciones, preguntamos ¿Expresan las observaciones todo lo necesario, o asume que las demás observaciones serán similares? ¿Son poblaciones o muestras las cifras de la lista de compras?
Respuesta Son muestras. Las poblaciones son todos los precios de cada almacén; suponemos que otros días y con otras listas de productos, obtendremos resultados similares.
Denominamos parámetro, a un número utilizado para resumir una distribución de la población. A un número similar, utilizado para describir una muestra lo denominamos estadística.
Ejemplo 2 : Estamos estudiamos la población del Perú y queremos saber si ¿la edad media de todos los peruanos es un parámetro o una estadística?
Respuesta. Es un parámetro.
Ejemplo 3: Un productor de café de Jaén, zona nororiental del Perú, desea saber el número promedio de insectos nocivos a este sembrío por hectáreas; para ello cuenta el número de insectos que hay en un gran número de parcelas de una hectárea, seleccionadas al azar. Preguntamos: ¿El número de insectos por hectárea que hay en su muestra es un parámetro o una estadística?
Respuesta. Es una estadística.
Finalizando esta parte, precisamos lo siguiente: la media de una distribución muestral es una estadística; la media de una distribución de población es un parámetro; la desviación estándar de una distribución de la población es un parámetro y la desviación estándar de una distribución muestral es una estadística.