Error de Muestreo
La muestra debe seleccionarse a partir de la población objetivo o de estudio procurando que sea representativa de la población. Se controlará que las características de la muestra sean una aproximación de las características de la población con un margen de error tolerable y conocido. Autores como Hopkins, K., Hopkins, B. Y Glass, S. (1997) entre otros hacen énfasis en este criterio porque en investigación es mas importante la representatividad de la muestra que la preocupación por el tamaño de la misma.
La estadística inferencial es un medio para la toma de decisiones con base en información limitada. Se utiliza la información proveniente de la observación de las muestras y lo que se conoce acerca del error de muestreo para establecer conclusiones generalizables a la población. Un instrumento básico de esta disciplina lo constituye la hipótesis de nulidad o explicación que propone una relación casual, sosteniendo que no hay ninguna relación entre las variables y que cualquier relación que se observe es una función de la casualidad.
Un investigador debe aceptar o rechazar la hipótesis de nulidad a un deternimado nivel de significancia estadística (= 0.01, =0.05). Toda decisión que el investigador tome pudiera ser aceptada o errónea, pudiendo cometer errores de tipo I y de tipo II. El error de tipo I consiste en rechazar una hipótesis de nulidad verdadera, cuando la hipótesis nula es en realidad verdadera. El error de tipo II consiste en aceptar una hipótesis de nulidad que es en realidad