"Contribuciones a la Economía" es una revista
académica con el
Número Internacional Normalizado
de Publicaciones Seriadas
ISSN 1696-8360
MODELO ACTUARIAL PARA ESTIMAR LA TASA DE INTERÉS JUSTA/ÓPTIMA DE UN FINANCIAMIENTO AUTOMOTRIZ
Robert Hernández Martínez (CV)
Rodolfo Espíndola Heredia (CV)
Christopher Iván Pérez Alonso (CV)
robert@actuariayfinanzas.net
Universidad Autónoma del Estado de México
RESUMEN:
El presente modelo actuarial de tasa de interés justa, pondera de manera equilibrada el precio del dinero - tanto para un prestamista, como para el solicitante - en donde ninguna de las partes resulta más beneficiada en perjuicio de la otra. De este modo, sea cual sea la elección del enganche y plazo que el cliente decida, siempre obtendrá el precio óptimo del financiamiento solicitado.
La función Z = f(x,y) representa a la variable de tasa de interés justa, en donde ambas partes tendrían una relación del tipo “ganar - ganar”; es decir, que ambas partes resultan mutuamente beneficiadas de la operación crediticia y en la cual ninguna de ellas obtiene ventaja en perjuicio de su contraparte.
El precio justo del crédito automotriz se encuentra sobre la superficie de una gráfica de tres dimensiones cuyos puntos óptimos convergen en el vector (x,y,z); que determina la tasa de interés i, para un crédito sano.
El diseño de un modelo computacional permite que el usuario interactúe con las variables de enganche y plazo, para conocer cómo influyen en el comportamiento de su crédito; tanto en el pago mensual, como en los intereses, impuestos y seguros; ofreciéndole una corrida financiera a lo largo del plazo contratado. Así, el modelo actuarial es totalmente dinámico ya que se adapta a los escenarios que se propongan.
Corolario de lo anterior, resulta que cualquier punto fuera de la superficie óptima de la gráfica implicaría una ventaja/desventaja para alguna de las partes; por lo que el presente modelo permite realizar análisis de sensibilidad para tomar decisiones ANTES de celebrar la operación, considerando diferentes escenarios para las variables (x,y); de este modo, el modelo representa una herramienta de PREVISIÓN e incluso de PREVENCIÓN para la toma de mejores decisiones financieras.
ABSTRACT:
This actuarial model deals with the “fair interest rate” issue, which is a weighted - balanced way for pricing money; where neither the lender nor the borrower gets more benefit than his counterparty. Thus, whatever the choice of time and down payment the client decides on, he will get the optimal price of the requested funding.
Equation Z = f (x,y) represents the variable “fair interest rate”, where both parties would have a "win – win relationship"; i.e., they mutually benefit from lending and none of them gets advantage to the detriment of its counterpart.
The fair price of a car loan is on the surface of a three-dimension graph whose points converge to the optimal vector (x,y,z), which determines the interest rate i, for a healthy credit.
Designing a computational model allow users to interact with variables of down payment and time to observe their influence in the debt; such as monthly payment, interest, taxes and insurance, offering a financial run to analyze. Thus, the actuarial model is fully dynamic and suitable to scenarios.
In conclusion, any point outside the optimal surface chart would imply an advantage / disadvantage to either party, so this model is appropriate to sensitivity analysis to make decisions BEFORE closing the operation, considering different scenarios for the variables (x,y), thus the model represents a PREDICTION tool and even a HEDGING STRATEGY for financial decision making process.
PALABRAS CLAVE:
modelo computacional - tasa de interés justa - relación “ganar - ganar” – precio óptimo del financiamiento - corrida financiera - precio justo del crédito automotriz – escenarios - modelo actuarial dinámico - crédito sano - análisis de sensibilidad para tomar decisiones ANTES de celebrar la operación - modelo de PREVISIÓN y PREVENCIÓN para la toma de decisiones financieras
KEY WORDS:
computational model - fair interest rate – “win – win relationship” - optimal price of funding - financial model - fair price of a car loan - scenarios - dynamic actuarial model - healthy credit - sensitivity analysis to make decisions BEFORE closing operation - prediction and prevention model for financial decision making
Clasificación JEL (Journal Economic Literature): C67
Para ver el artículo completo en formato pdf comprimido zip pulse aquí
Hernández Martínez, R., Espíndola Heredia, R. y Pérez Alonso, C.: "Modelo actuarial para estimar la tasa de interés justa/óptima de un financiamiento automotriz" ,en Contribuciones a la Economía, enero 2014, en www.eumed.net/ce/2014/modelo-actuarial.html
¿Alguna vez hemos estado ante la oportunidad de adquirir el automovil ansiado durante tanto tiempo?.¿Cuántas veces algún familiar o amigo nos ha preguntado sobre la conveniencia de adquirir un automovil mediante un crédito que le ofrece cierta entidad financiera?.
Actualmente nos encontramos materialmente inundados por información publicitaria respecto de ofertas para adquirir el automovil de nuestros sueños con sólo un pequeño enganche; y, aparentemente, con actractivas tasas de interés. Sin embargo, surge la disyuntiva de elegir la que mejor convenga a nuestros intereses como consumidores. ¿Pero comó saberlo? ...
Esta investigación trata de resolver este dilema mediante la aplicación práctica de las Ciencias Actuariales; como veremos, la Actuaría puede proporcionarnos un modelo financiero que determine las mejores condiciones de tasa de interés; no solo para el consumidor, sino también para el prestamista, de tal suerte que ambas partes se vean beneficiadas del negocio crediticio.
Antes de continuar, es necesario revisar un ejemplo típico que se presenta al solicitar un crédito para adquirir un automovil:
Supongamos que se desea adquirir un automovil con un valor de mercado de $150,000.00 pesos, de los cuales sólo se tienen $52,500.00 pesos en efectivo - resultado del ahorro del solicitante - cantidad que aportará como enganche; es decir, el 35% del valor del automovil; por consiguiente, una institución financiera está dispuesta a financiar el restante 65%, a través de una agencia automotriz. Así, la financiera ofrece un crédito de mediano plazo, en el cual permite elegir el vencimiento en meses que el solicitante desee, hasta un máximo de 5 años.
Generalmente, las financieras solicitan que el cliente aporte entre el 10% y el 60% de enganche; así como la oportunidad de pagar el crédito a diferentes plazos (múltiplos de 6 ó 12 meses); comenzando desde 12, 18, 24, 30, 36 meses, hasta un máximo de 60 meses.
Es importante mencionar que aún cuando la mayoría de las financieras otorgan una tasa de interés fija, omiten asignar al solicitante una tasa de interés que corresponda con el enganche aportado y el plazo solicitado por el cliente; evitando que el cliente pueda acceder a un financiamiento más barato si; por ejemplo, aportara un mayor enganche y al mismo tiempo deseara un menor plazo.
Por otro lado, la financiera es indiferente a los clientes que aportan un menor enganche y desean un plazo de pago más largo; pues en ambos casos, el rango de tasas de interés mínima y máxima que la financiera otorga a sus clientes no es sensible a éstas variables simultáneamente; es decir, la tasa a pagar no se ve afectada por una modificación en el enganche aportado CONJUNTAMENTE con el plazo solicitado por el cliente; ya que al momento de asignarle la tasa de interés al solicitante, si bien se pondera el plazo elegido (a mayor plazo, mayor tasa y viceversa); se deja de ponderar la magnitud del enganche inicial del cliente; por lo que el solicitante del crédito se ve privado de la oportunidad de acceder a una tasa más barata por haber requerido un crédito de menor importe; y consecuentemente, de menor riesgo para la financiera (a mayor monto prestado, mayor riesgo crediticio y viceversa). En cambio, la financiera aplicará el mismo criterio al solicitante que le aporte; por ejemplo, un enganche de 50% del valor del automovil, que al que le aporta sólo el 20%, pues en ambos casos sólo tomará en cuenta el plazo del crédito para asignar la tasa correspondiente.
En suma, el modelo tradicional de las financieras omite ponderar SIMULTÁNEA y EQUILIBRADAMENTE:
Empero, la mayoría de las financieras sólo consideran el plazo solicitado para asignar la tasa de interés, sin tomar en cuenta el importe del enganche como un elemento para establecer dicha tasa.
Tasa de interés: El precio del dineroEl dinero, como cualquier otra mercancía tiene un precio; el cual depende de múltiples factores tales como: la demanda de los consumidores (aquellos que desean obtenerlo), y la oferta (aquellos que lo poseen y desean prestarlo); circunstancias que determinan la disponibilidad de dinero para ser prestado en el mercado.
Del mismo modo, influye el tiempo durante el cual el prestamista está dispuesto a otorgar el crédito, como el importe del capital y el riesgo que corre en la operación. Estos elementos se ven reflejados en un indicador clave: LA TASA DE INTERÉS.
Así, queda claro que el precio del dinero está expresado en el porcentaje de interés que el prestamista - en este caso, la financiera - pretende obtener a cambio de permitir el uso temporal de su dinero por un tercero (el deudor).
Plazo de financiamiento: El valor del dinero en el tiempoSe entiende como plazo de financiamiento, al tiempo que la financiera otorga al cliente para liquidar un crédito. Éste se estipula al celebrarse el contrato fijándose una fecha de vencimiento máxima dentro de la cual el deudor deberá devolver el capital en su totalidad.
El valor del dinero a través del tiempo se traduce en la generación de intereses ordinarios sobre el capital dispuesto; cumpliéndose el principio básico de las finanzas de que el dinero es más valioso cuanto más pronto se recibe, puesto que tiene la capacidad potencial de generar interés. Así, el simple transcurso del tiempo implica la obtención de una cantidad como ganancia por el solo hecho de que alguien otorgó a otro una cantidad en dinero que éste necesitaba para satisfacer sus necesidades.
En el caso del financiamiento automotriz, entre mayor sea el tiempo solicitado para pagar el crédito, el pago de intereses aumentará; y como resultado, el precio del automóvil se elevará.
Enganche: Compromiso inicial del deudorEl “enganche” es la cantidad de dinero que el solicitante del crédito aporta como pago inicial al comprar un bien – en este caso, un automóvil – representa un porcentaje del valor total del bien que no es financiado por la institución crediticia, y cuya finalidad es afianzar la compra. Este dinero deberá provenir de los recursos del solicitante, en la mayoría de los casos son ahorros propios.
Si un cliente aporta un enganche mayor, entonces el importe del préstamo para completar el precio del automóvil se reduce; y en consecuencia, el riesgo también porque es más fácil pagar un préstamo pequeño que uno grande, y porque la garantía (el automóvil), cubrirá en exceso el capital si éste es menor y eventualmente el cliente no hiciera frente a su obligación de pago; por lo que la tasa de interés debiera ser más baja, contribuyendo a evitar sobreendeudamiento y que la mensualidad a cargo del deudor no rebase la tercera parte de sus ingresos mensuales. Por otro lado, optar por un enganche menor implica un préstamo de mayor importe; y por lo tanto, una tasa de interés más alta, lo que resultaría en la compra de un bien más oneroso.
Por otro lado, aportar un enganche demuestra compromiso y disciplina por parte de las personas; ya que para ahorrarlo tuvieron que restringir sus hábitos de consumo y de gasto; lo que anticipa expectativas de que el solicitante del crédito mantendrá esta disciplina para pagar las mensualidades futuras del crédito, aunque no está de más verificar el historial crediticio del cliente.
¿Cuál es el precio justo de un crédito automotriz?. Desarrollo de un modelo actuarial para estimar la tasa justa de un financiamiento. Concepto de “tasa justa”De acuerdo al Diccionario de la Lengua Española1 el vocablo justo o justa tiene la siguiente acepción:
justo, ta. |
Así, tenemos que para acceder al precio justo de un financiamiento; es decir, a la tasa de interés que ajuste con la debida proporción, los componentes de plazo y enganche para asignar la tasa óptima del crédito; se requiere de un modelo actuarial que pondere matemáticamente todos los posibles escenarios que puedan presentarse entre los extremos siguientes:
En resumen, dado un intervalo acotado por una tasa mínima y una tasa máxima de interés, el modelo actuarial que se propone en esta investigación permite calcular una tasa justa (equilibrada), que proporcione un beneficio mutuo para las partes (prestamista y deudor); de tal suerte que sea un negocio sano para la financiera y para el cliente; pues la tasa asignada siempre ponderará equilibradamente el enganche aportado conjuntamente con el plazo solicitado.
Considerando lo anterior, resulta pertinente citar el significado del vocablo ponderar:
ponderar. ponderación. |
Por lo tanto, la tasa de interés justa proporcionará al deudor el precio óptimo del financiamiento - que no es ni más ni menos que lo que debe tener – por su compromiso en la operación crediticia; por su parte, la financiera obtendrá un porcentaje de ganancia sano que impida cobros en exceso, en detrimento del deudor; y que al mismo tiempo le garantice un rendimiento que no será inferior al verdadero precio del dinero; por lo que el modelo actuarial de tasa justa resulta en un buen negocio para la financiera y el deudor; en el que ambas partes obtienen un beneficio en proporción a su participación económica y compromiso en el negocio crediticio.
Variables del modeloDe lo anteriormente señalado, resulta que el modelo actuarial para estimar la tasa justa de un financiamiento, está determinado por una función Z que depende de dos variables x e y; matemáticamente, Z = f(x,y); donde:
Para fines de este ejemplo, la financiera puede otorgar financiamiento en un rango de tasas que varía entre el 8% y el 20% anual; por lo que el quid del asunto es la asignación de la z ideal para la combinación plazo – enganche (x,y).
Ecuación general del modeloLa función Z permite que ambas partes - prestamista y deudor - resulten beneficiadas.
Las ponderaciones Zi se presentan en el área cuadriculada color blanco (es el rectángulo cuyos vértices están acotados por los valores 0, 10, 88 y 98). Se ha destacado el primer vértice (cuadro amarillo) para hacer notar que en el punto Z1 donde converge el menor plazo solicitado (12 meses) y el mayor enganche aportado (60%), se denota el par ordenado o vector (12,60%); cuyo valor para la tasa justa debe ser el menor posible; es decir, 8% anual; y por ello el ponderador de la función es cero.
Dicho ponderador se incrementa progresivamente, de tal manera que en caso de que el solicitante requiriera el plazo más largo de financiamiento (60 meses) y sólo aportara un 10% de enganche, vector (60,10%); entonces la tasa justa resulta ser la más alta que la financiera otorga; o sea 20% anual, y por ello el ponderador alcanza su máximo valor (98). Véase el punto Z99 en el último vértice (cuadro amarillo en el extremo opuesto al primer cuadro amarillo mencionado anteriormente).
De esta forma la ecuación matemática de la tasa justa se denota como:
Donde el vector (x,y) es el valor de la coordenada en la que convergen plazo y enganche; que como se advierte en la matriz puede varíar desde 0, 1, 2, … 98.
De este modo, la ecuación anterior z determina la tasa de interés justa i, para cada combinación de pares ordenados (x,y). En síntesis z = i.
Gráficamente, la solución de la tasa justa se puede ilustrar como una superficie en tres dimensiones, en la que el eje X representa el PLAZO de financiamiento solicitado por el cliente, el eje Y es el porcentaje de ENGANCHE que aporta en la operación; y finalmente, el eje Z representa la tasa de interés que pondera equilibradamente los componentes (x,y).
En este caso, la superficie trazada se conforma por todos los puntos (x,y,z) que satisfacen la ecuación Z = f(x,y). Así, es posible apreciar los extremos de tasa de interés mínima y máxima; 8% anual y 20% anual, respectivamente, señalados con una flecha en la gráfica; así como la forma en que se ajusta la ponderación al variar el plazo o el enganche de acuerdo a la elección del solicitante; por lo que el modelo es dinámico y puede realizarse análisis de sensibilidad para observar el efecto en la tasas de interés del financiamiento, cuando se decide modificar alguna de las variables (x,y), ya que la superficie en la gráfica representa la solución a todas las posibles combinaciones de plazo y enganche que el solicitante puede acceder.
Outputs del modelo: Tasa de equilibrio para prestamista y deudor. Corrida financiera con el precio justo del crédito.El modelo actuarial se diseñó a través de una hoja de cálculo de Excel que permite al usuario elegir las opciones para cotizar su crédito.
Asimismo, el modelo arroja una corrida financiera en la que indica la cantidad a pagar mensualmente y la forma en que se integra cada pago; desglosando amortización de capital, intereses mensuales, Impuesto al Valor Agregado (IVA), seguro de daños del automóvil y seguro de vida del solicitante; pues dichos seguros saldarán la deuda en caso de robo o pérdida total del automóvil; o si ocurriera el fallecimiento del deudor durante la vigencia del adeudo.
Por lo tanto, los outputs del modelo (corrida financiera), permiten que el solicitante del crédito evalúe la conveniencia del financiamiento ofrecido y conozca sus consecuencias económicas ANTES de contratarlo; bajo un escenario de tasa de interés justa en la cual el importe del préstamo corresponde cabalmente con el precio del dinero; por lo que constituye una herramienta computacional de PREVISIÓN y también de PREVENCIÓN FINANCIERA. Por su parte, la financiera tendrá la oportunidad de valorar si dicho precio es concordante con el mercado de tasas para créditos semejantes, de tal manera que no cobre ni más ni menos tasa de interés considerando las alternativas de plazo y enganche que el cliente solicite; por lo que podrá diseñarle un “financiamiento a la medida”. En consecuencia, el modelo proporciona a ambas partes – prestamista y deudor – una tasa libre de sesgo (insesgada), pues siempre obtendrá un punto en la superficie de la función Z en la que se encuentran los créditos considerados viables por guardar un sano equilibro entre las variables x e y; puntos que pueden considerarse óptimos para cada combinación de pares ordenados (x,y).
ConclusiónDerivado del modelo actuarial anterior, se enuncian las siguientes conclusiones:
La tasa de interés justa del crédito automotriz depende del importe del enganche aportado inicialmente y el plazo que el comprador desee en la operación.
El modelo actuarial de tasa justa, pondera de manera equilibrada el precio del dinero - tanto para el prestamista, como para el solicitante - en donde ninguna de las partes resulta más beneficiada en perjuicio de la otra. De este modo, sea cual sea la elección del enganche y plazo que el cliente decida, siempre obtendrá el precio óptimo del financiamiento solicitado.
La función Z = f(x,y) representa a la variable de tasa de interés justa, en donde ambas partes tendrían una relación del tipo “ganar - ganar”; es decir, que ambas partes resultan mutuamente beneficiadas de la operación crediticia y en la cual ninguna de ellas obtiene ventaja en perjuicio de su contraparte.
El precio justo del crédito automotriz se encuentra en la superficie de una gráfica de tres dimensiones cuyos puntos óptimos convergen en el vector (x,y,z); que determina la tasa de interés i, para un crédito sano.
El diseño de un modelo computacional permite que el usuario interactúe con las variables de enganche y plazo, para conocer cómo influyen en el comportamiento de su crédito; tanto en el pago mensual, como en los intereses, impuestos y seguros; ofreciéndole una corrida financiera a lo largo del plazo contratado. Así, el modelo actuarial es totalmente dinámico ya que se adapta a los escenarios que se propongan.
Corolario de lo anterior, resulta que cualquier punto fuera de la superficie óptima de la gráfica implicaría una ventaja/desventaja para alguna de las partes; por lo que el presente modelo permite realizar análisis de sensibilidad para tomar decisiones ANTES de celebrar la operación, considerando diferentes escenarios para las variables (x,y); de este modo, el modelo representa una herramienta de PREVISIÓN e incluso de PREVENCIÓN para la toma de mejores decisiones financieras.
Muchas gracias.
Robert Hernández Martínez
Rodolfo Espíndola Heredia
Christopher Iván Pérez Alonso
Ciudad de México, enero 2014.
Ilustración 1: Matriz de coordenadas PLAZO (en meses) versus ENGANCHE (porcentaje aportado sobre el valor del automóvil); i.e. vector (x,y).
Ilustración 2: Matriz de tasas de interés justas resultado de la función Z = f(x,y).
Ilustración 3: Tasa de interés justa en función del monto del enganche aportado inicialmente por el solicitante y el plazo en meses que desea contratar.
Ilustración 4: Pantalla de INPUTS del modelo, en la cual el usuario elige las opciones de compra de automóviles disponibles en la base de datos; así como las condiciones financieras que desea para cotizar su crédito.
Ilustración 5: Ejemplo de OUTPUTS del modelo en la que se muestra una corrida financiera con la tasa de interés justa, para un crédito a 12 meses, a partir de la información elegida en la ilustración 4.
CONRAD CARLBERG. (1996) “Análisis de los Negocios con Excel”. Prentice Hall, México.
ANDERSON, SWEENY, WILLIAMS. (1999) “Métodos Cuantitativos para los Negocios”. International Thomson Editores, México.
PERDOMO MORENO ABRAHÁM. (2000) “Toma de Decisiones Financieras”. Ediciones PEMA, México.
FREDERICK S. HILLIER, MARK S. HILLIER, GERALD J. LIEBERMAN. (2002) “Métodos Cuantitativos para Administración. Un enfoque de modelos y casos de estudio, con hoja de cálculo”. Irwin McGraw Hill, México.
ERIK BANKS, RICHARD DUNN. (2003) “Practical Risk Management. An Executive Guide to Avoiding Surprises and Losses”. John Wiley & Sons Ltd., UK.
ALEMÁN CASTILLA MA. CRISTINA, GONZÁLEZ ZAVALETA EDMUNDO (2003) “Modelos Financieros en Excel”. Ed. CECSA, México.
ALEXANDER J. MCNEIL, RÜDIGER FREY, PAUL EMBRECHTS. (2005) “Quantitative Risk Management. Concepts, Techniques and Tools”. Princeton University Press, USA.
CASPARRI MARÍA TERESA, BERNARDELLO ALICIA. (2005) “Matemática Financiera utilizando Excel”. Omicron System, Argentina.
STEVEN D. LEVITT, STEPHEN J. DUBNER (2006). “Freakonomics”. Ediciones B, España.
HERNÁNDEZ SAMPIERI ROBERTO, FERNÁNDEZ – COLLADO CARLOS, BAPTISTA LUCIO PILAR. (2006) “Metodología de la Investigación”. McGraw Hill, México.